Содержание
- Схема № 1
- Схема № 2
- Схема № 3
- Схема № 4
- Схема № 5
- Схема № 6
- Схема № 7
- Схема № 8
- Схема № 9
- Схема № 10
- Схема № 11
- Схема № 12
- Схема № 13
- Схема № 14
- Схема № 15
- Схема № 16
- Схема № 17
- Схема № 18
- Схема № 19
- Схема № 20
- Схема № 21
- Схема № 22
- Схема № 23
- Схема № 24
- Схемы присоединения систем отопления к тепловой сети
- Значения коэффициентов смешения
Билет №1
1. Источниками энергии, в том числе и тепловой, могут служить вещества, энергетический потенциал которых достаточен для последующего преобразования их энергии в другие ее виды с целью последующего целенаправленного использования. Энергетический потенциал веществ является параметром, позволяющим оценить принципиальную возможность и целесообразность их использования как источников энергии, и выражается в единицах энергии: джоулях (Дж) или киловатт (тепловых)-часах [кВт(тепл.) -ч] *.Все источники энергии условно делят на первичные и вторичные (рис. 1.1). Первичными источниками энергии называют вещества, энергетический потенциал которых является следствием природных процесов и не зависит от деятельности человека. К первичным источникам энергии относятся: ископаемые горючие и расщепляющиеся вещества, нагретые до высокой температуры воды недр Земли (термальные воды), Солнце, ветер, реки, моря, океаны и др. Вторичными источниками энергии называют вещества, обладающие определенным энергетическим потенциалом и являющиеся побочными продуктами деятельности человека; например, отработавшие горючие органические вещества, городские отходы, горячий отработанный теплоноситель промышленных производств (газ, вода, пар), нагретые вентиляционные выбросы, отходы сельскохозяйственного производства и др.Первичные источники энергии условно разделяют на невозобновляющиеся, возобновляющиеся и неисчерпаемые. К ^возобновляющимся первичным источникам энергии относят ископаемые горючие вещества: уголь, нефть, газ, сланец, торф и ископаемые расщепляющиеся вещества: уран и торий. К возобновляющимся первичным источникам энергии относят все возможные источники энергии, являющиеся продуктами непрерывной деятельности Солнца и природных процессов на поверхности Земли: ветер, водные ресурсы, океан, растительные продукты биологической деятельности на Земле (древесину и другие растительные вещества), а также и Солнце. К практически неисчерпаемым первичным источникам энергии относят термальные воды Земли и вещества, которые могут быть источниками получения термоядерной энергии.Ресурсы первичных источников энергии на Земле оцениваются общими запасами каждого источника и его энергетическим потенциалом, т. е. количеством энергии, которая может быть выделена из единицы его массы. Чем выше энергетический потенциал вещества, тем выше эффективность его использования как первичного источника энергии и, как правило, тем большее распространение оно получило при производстве энергии. Так, например, нефть имеет энергетический потенциал, равный 40 000—43 000 МДж на 1 т массы, а природный и попутный газы — от 47 210 до 50 650 МДж на 1 т массы, что в сочетании с их относительно невысокой стоимостью добычи сделало возможным их быстрое распространение в 1960—1970-х годах как первичных источников тепловой энергии.Использование ряда первичных источников энергии до последнего времени сдерживалось либо сложностью технологии преобразования их энергии в тепловую энергию (например, расщепляющиеся вещества), либо относительно низким энергетическим потенциалом первичного источника энергии, что требует больших затрат на получение тепловой энергии нужного потенциала (например, использование солнечной энергии, энергии ветра и др.). Развитие промышленности и научно-производственного потенциала стран мира привело к созданию и реализации процессов производства тепловой энергии из ранее неразрабатывавшихся первичных источников энергии, в том числе к созданию атомных станций теплоснабжения, солнечных генераторов теплоты для теплоснабжения зданий, теплогенераторов на геотермальной энергии.
Принципиальная схема тэс
2.Тепловой пункт (ТП) — комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя и распределение теплоносителя по типам потребления.Основными задачами ТП являются:
Преобразование вида теплоносителя
Контроль и регулирование параметров теплоносителя
Распределение теплоносителя по системам теплопотребления
Отключение систем теплопотребления
Защита систем теплопотребления от аварийного повышения параметров теплоносителя
Учет расходов теплоносителя и тепла
Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.
Принципиальная схема теплового пункта
Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает свое тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.
Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.
Система отопления также представляет замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.
Билет №3
Схемы присоединения потребителей к тепловым сетям. Принципиальная схема ИТП
Различают зависимые и независимые схемы присоединения систем отопления:
Независимая (закрытая) схема подключения — схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (перегретая вода), поступающий из тепловой сети, проходит через теплообменник, установленный на тепловом пункте потребителя, где нагревает вторичный теплоноситель, используемый в дальнейшем в системе теплопотребления
Зависимая (открытая) схема подключения — схема присоединения системы теплопотребления к тепловой сети, при которой теплоноситель (вода) из тепловой сети поступает непосредственно в систему теплопотребления.
Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
2. Принцип действия МГД-генератора. Схема ТЭС с МГД.
Магнитогидродинамический генератор, МГД-генератор — энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию.
Также как и в обычных машинных генераторах, принцип работы МГД-генератора основан на явлении электромагнитной индукции, то есть на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. Но, в отличие от машинных генераторов, в МГД-генераторе проводником является само рабочее тело, в котором при движении поперёк магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.
Рабочим телом МГД-генератора могут служить следующие среды:
· Плазма (ионизированный газ)
Первые МГД-генераторы использовали в качестве рабочего тела электропроводные жидкости (электролиты), в настоящее время применяют плазму, в которой носителями зарядов являются в основном свободные электроны и положительные ионы, отклоняющиеся в магнитном поле от траектории, по которой газ двигался бы в отсутствие поля. В таком генераторе может наблюдаться дополнительное электрическое поле, так называемое поле Холла, которое объясняется смещением заряженных частиц между соударениями в сильном магнитном поле в плоскости, перпендикулярной магнитному полю.
Электростанции с магнитогидродинамическими генераторами (МГД-генераторами). МГД – генераторы планируется сооружать в качестве надстройки к станции типа КЭС. Они используют тепловые потенциалы в 2500—3000 К, недоступные для обычных котлов.
Принципиальная схема ТЭС с МГД – установкой показана на рисунке. Газообразные продукты сгорания топлива, в которые вводится легкоионизируемая присадка (например, К2СО3), направляются в МГД – канал, пронизанный магнитным полем большой напряженности. Кинетическая энергия ионизированных газов в канале преобразуется в электрическую энергию постоянного тока, который, в свою очередь, преобразуется в трехфазный переменный ток и направляется в энергосистему потребителям.
Принципиальная схема КЭС с МГД-генератором:
1 – камера сгорания; 2 – МГД – канал; 3 – магнитная система; 4 – воздухоподогреватель,
5 – парогенератор (котел); 6 – паровые турбины; 7 – компрессор;
8 — конденсатный (питательный) насос.
Схемы подключения потребителей тепловой сети универсальны. Например, не указав данные по системе вентиляции (СВ), в выбранной схеме СВ рассчитываться не будет.
В схемах №: 1, 2, 3, 4, 5, 6 не указав данные по системе ГВС, в выбранной схеме ГВС рассчитываться не будет. Наличие регулятора температуры ГВС, циркуляционной линии, насоса на подающей линии ГВС указывается пользователем в базе данных определенного объекта тепловой сети.
Для системы отопления наличие регулятор расхода, давления в обратном трубопроводе или регулятора отопления (погодное регулирование) указывается пользователем в базе данных определенного объекта тепловой сети.
Схема № 1
Потребитель с открытым водоразбором на ГВС и независимым присоединением СО и СВ
Схема № 2
Потребитель с открытым водоразбором на ГВС и элеваторным присоединением СО
Схема № 3
Потребитель с открытым водоразбором на ГВС и независимым присоединением СО
Схема № 4
Потребитель с открытым водоразбором на ГВС и непосредственным присоединением СО
Схема № 5
Потребитель с открытым водоразбором на ГВС и насосным присоединением СО (насос на перемычке)
Схема № 6
Потребитель с открытым водоразбором на ГВС и элеваторным присоединением СО
Схема № 7
Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и элеваторным присоединением СО
Схема № 8
Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и независимым присоединением СО
Схема № 9
Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и насосным присоединением СО и СВ
Схема № 10
Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и независимым присоединением СО и СВ
Схема № 11
Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и насосным присоединением СО (насос на перемычке)
Схема № 12
Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и элеваторным присоединением СО
Схема № 13
Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и элеваторным присоединением СО
Схема № 14
Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением СО
Схема № 15
Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и насосным присоединением СО и СВ (насос на перемычке)
Схема № 16
Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением СО и СВ
Схема № 17
Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и насосным присоединением СО
Схема № 18
Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и элеваторным присоединением СО
Схема № 19
Потребитель с параллельным подключением подогревателей ГВС и элеваторным присоединением СО
Схема № 20
Потребитель с параллельным подключением подогревателей ГВС и независимым присоединением СО
Схема № 21
Потребитель с параллельным подключением подогревателей ГВС и насосным присоединением СО и СВ (насос на перемычке)
Схема № 22
Потребитель с параллельным подключением подогревателей ГВС и независимым присоединением СО и СВ
Схема № 23
Потребитель с параллельным подключением подогревателя ГВС и насосным присоединением СО (насос на перемычке)
Схема № 24
Потребитель с параллельным подключением подогревателя ГВС и элеваторным присоединением СО
Присоединение сетей теплопотребления к водяным тепловым сетям определяют видом тепловой нагрузки, температурным и пьезометрическим графиком работы тепловой сети. Присоединение потребителей к тепловым сетям происходит в центральных и индивидуальных тепловых пунктах.
Различают следующие виды присоединения систем отопления: непосредственное, зависимое, независимое.
Непосредственное присоединение показано на рис а. Если параметры системы отопления совпадают с параметрами тепловой сети, систему отопления присоединяют к тепловой сети непосредственно, без установки какого-либо промежуточного устройства.
Зависимое присоединение. Если для системы отопления требуется более низкая температура, чем в тепловой сети, а давление в точке присоединения ниже допустимого, то применяется зависимое присоединение. Температура теплоносителя снижается смешением сетевой воды с обратной водой системы отопления.
Для смешения применяют водоструйные насосы (элеваторы) или насосы. Наибольшее распространение в качестве смесительного устройства получил элеватор (б). При применении элеваторов вследствие их большого сопротивления повышается гидравлическая устойчивость тепловой сети. Кроме того, элеватор является чрезвычайно простым устройством, не имеющим движущихся частей, поэтому он надежен в эксплуатации, имеет большой срок службы, затраты на его обслуживание минимальны. Для обеспечения расчетной температуры в системе отопления необходимо обеспечить расчетный коэффициент смешения, определяемый по формуле:
где U — коэффициент смешения; G2 — расход подмешиваемой воды из системы отопления, кг; G1 — расход воды, поступающей из тепловой сети, кг, т; T1 — температура воды в подающем трубопроводе тепловой сети, °С; Т11 — то же в подающем трубопроводе системы отопления (после смесительного устройства), °С; Т22 — то же в обратном трубопроводе системы отопления.
Схемы присоединения систем отопления к тепловой сети
а — непосредственное: б — зависимое с помощью элеватора;
в — зависимое, с насосом на перемычке; г—то же с насосом на подающем трубопроводе системы отопления;
д — то же, с насосом на обратном трубопроводе; в — независимое;
1 — элеватор; 2 — грязевик; 3 — насос; 4 — подогреватель; 5 — водомер;
РД — ре¬гулятор давления; РР — регулятор расхода; PC —расширительный, бак
Значения коэффициентов смешения в зависимости от расчетных температур тепловой сети в системе отопления приведены в таблице ниже.
Значения коэффициентов смешения
Расчетная температура в тепловой сети, °С
Расчетная температура в системе отопления, °С
Нормальная работа элеватора происходит при H/h = 8-12 (H— располагаемый напор на вводе; h — сопротивление системы отопления).
Следует иметь в виду, что значение расчетного напора перед элеватором прямо пропорционально сопротивлению системы отопления. Поэтому увеличение сопротивления системы отопления, например, в 1,5 раза вызовет увеличение расчетного напора Я также в 1,5 раза.
Присоединение с насосом на перемычке (в). В том случае, если смешение воды не может быть выполнено с помощью элеватора, устанавливают насос на перемычке между подающим и обратным трубопроводами системы отопления. Смешение с помощью элеватора не может быть выполнено по следующим причинам: напор в месте присоединения недостаточен для нормальной его работы; потребная тепловая мощность смесительного узла велика и выходит за пределы мощности изготовляемых элеваторов (обычно больше 0,8 МВт — 0,7 Гкал/ч).
При установке смесительных насосов в жилых и общественных зданиях рекомендуется применять бесшумные бесфундаментные насосы. При установке смесительных насосов, рассчитанных на большую подачу, применяют в качестве смесительных насосов центробежные типа К и КМ. Подача насоса равна G2=1.1G1, а напор должен быть равен H = 1.15h (где h — сопротивление системы отопления).
Присоединение с насосом на подающем трубопроводе системы отопления (г). Насос на подающем трубопроводе устанавливают в том случае, если наряду со смешением воды требуется повысить давление в подающем трубопроводе в месте присоединения системы отопления (статическая высота системы отопления выше давления в подающем трубопроводе в месте присоединения).
Подача насоса равна G3 = 1,1 (1 + U)G1,а напор должен быть равен:
где h — сопротивление системы отопления; hn — разность между статической высотой системы отопления и пьезометрической высотой в подающем трубопроводе тепловой сети в месте присоединения, м.
Присоединение с насосом на обратном трубопроводе системы отопления (д). Насос на обратном трубопроводе устанавливают в том случае, если наряду со смешением воды требуется снизить давление в обратном трубопроводе в месте присоединения системы отопления (давление больше допустимого для системы отопления). Подача насоса в этом случае равна С3 = 1,1 (1 + U)G1 а напор должен иметь значение, обеспечивающее требуемое давление в обратном трубопроводе.
Независимое присоединение (е). Если давление в обратном трубопроводе в тепловой сети выше допустимого давления для системы отопления, а здание имеет значительную высоту или расположено на высоком месте по отношению к рядом стоящим зданиям, то систему отопления присоединяют по независимой схеме.
По независимой схеме допускается присоединять здания высотой 12 этажей и более. Независимая схема основана на отделении системы отопления от тепловой сети с помощью теплообменника, вследствие этого давление в тепловой сети не может передаваться теплоносителю системы отопления. Циркуляция теплоносителя осуществляется с помощью циркуляционных насосов типа К и КМ. Подачу насоса определяют по формуле
где Q — мощность системы отопления, кДж/ч (Гкал/ч); С — теплоемкость воды, Дж/(кг·ч); T11,T22 — расчетная температура воды соответственно в подающем и обратном трубопроводах системы отопления, °С